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ABSTRACT 

At the United Nations Millennium Summit in September of 2000, the world leaders agreed on an 

ambitious agenda for reducing poverty and improving lives: the Millennium Development Goals (MDGs)’, 

a list of issues they consider highly pernicious, threatening to human welfare and, thereby, to global 

security and prosperity. Among the eight goals are included fundamental human needs such as the 

eradication of extreme poverty and hunger, the promotion of gender equality, the reduction of child 

mortality and improvement of maternal health, and ensuring the sustainability of our shared environment. 

In order to help focus the efforts to meet these goals, the United Nations (UN) has established a set of 

eighteen concrete targets, each with an associated schedule. Among these is Target 10: “By 2015, 

reduce by half the proportion of people without access to safe drinking water.”2 A closely related target of 

equal dignity was agreed at the World Summit on Sustainable Development (Johannesburg, September 

2002): “By 2015, reduce by half the proportion of people without access to basic   an it at ion"^. 

One of the greatest successes in the development of Exploration-class technologies for closed-loop, 

sustainable support of long-duration human space missions has been the work both ESA and NASA have 

done in bioregenerative water reclamation (WRS), and secondarily, in solid-waste management. Solid- 

waste and WRS systems tend to be combined in the commercial world into the field of sanitation, 

although as we will see, the most essential principles of sustainable terrestrial sanitation actually insist 

upon the separation of solid and liquid excreta. Seeing the potential synergy between the space 

program ALS technologies developed for Mars and the urgent needs of hundreds of millions of people for 

secure access to clean water here on Earth, we set out to organize the adaptation of these technologies 

to help the United Nations Development Programme (UNDP) meet Target 10. In this paper, we will 

summarize the issues and results of the first “Water for Two Worlds” summit held in January of this 

year, describe the status of the sustainable sanitation systems that are on the table for adaptation to 

widespread terrestrial use, and present fundamental strategies for forward work. 
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INTRODUCTION 

Although the suggestion that the experience base being developed in the human spaceflight program 

may be helpful to the UN’s goals of improving global human welfare may seem to be a contradiction in 

terms, a long-term view of the very concept of globalism suggests the opposite. In many ways, the 

modern environmental movement was in part a response to seeing the first pictures of Earth as a planet 

during the Apollo missions of the late 60s. In what has become known as the overview effect, many 

astronauts have seen their lives and perspectives radically changed by the sight of an earth with no 

borders, a single global ocean, and one atmosphere. In this composite photo taken by earth orbiting 

satellites, it is somewhat easier to see the differences that exist on our planet. From space, the Earth is 

as a single organism comprised of multiple, complex elements engaged in constant intera~tion.~ 

Since the early 1960s the idea has taken hold of our Earth as one planet, without national borders, 

influenced by regional geology and microclimates and fundamentally interdependent. The planetary view 

has radicalized most philosophies of boundary and compartmentalization, and shown us the extent to 

which the nature of Earth’s systems and inhabitant species-our own included-is integrated, cyclical and 

codependent. More than three-fourths of the science payloads Columbia carried on her last mission were 

dedicated to the study of our planet’s organic and inorganic structures, and the SeaWIFS and AQUA 

payloads are beginning to return some very exciting data on the interdependency of Earths atmospheric 

and oceanic systems. It is not an accident that, since the 60s, we have identified the effects of 

chlorofluorocarbons on the ozone formation of the upper atmosphere, resulting in a global ban that has 

just begun to show the first signs of gradual repair5. Such a thing could never have been detected before 

spaceflight, which produced both the iconic images that drove the philosophy of globalization, and also 

the communications technology that made it possible6. 

THE MOTHERSHIP IDEA 

This revelation has affected not only science and philosophy but politics and economics as well. Today’s 

business methodologies, tools and economic models would have been unimaginable before the advent of 

satellites for weather, commerce, communication and analysis, all of which are products of our presence 

in space and our self-awareness as planetary citizens and brokers. The Millennium Development Goals 

themselves are dependent on an understanding of regional economic and cultural factors that are driven 

by geology-limate, resources and ecosystem -- and of the need to respond in a manner that addresses 

problems in context rather than separately. Separate solutions, like patches in a network of lines, are 

prone to ricochet effects in the larger system. These “unintended consequences” may arguably account 

for a high percentage of the environmental, economic and social degradation with which we must contend 

today. 
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Building and flying human-rated spacecraft is a challenge of enormous technical complexity, and this 

undertaking has led us to understand our own planet in terms of its systems and interfaces. In 

developing vehicles and payloads to help us search for life on other worlds, we are coming to an ever 

greater understanding of the degree to which the Earth’s chemical and physical composition, position and 

movement offer a uniquely tuned incubator for life as we know it. Because the planetary buffer is large, 

its integrated systems have managed to absorb a certain amount of insult; but as we are learning, even a 

minute change in the interactions of water, temperature and chemistry could have a devastating effect on 

Earth’s ability to support life at the current level of bi~diversity.~ More pointedly, we are now applying 

many of the models developed for aerospace and advanced manufacturing, like thermal and fluid 

analysis and integrated systems modeling, to our planet -- and discovering that the paradigm we have 

been striving towards was right here, all along. 

This is the essence of the Mothership idea: that the Earth is our collective home, our original spaceship, 

and as such represents the ideal archetype for any and all vehicles or facilities intended to support human 

and terrestrial life. On the planet as well as off, the most robust and efficient designs for integrated 

structures of any kind are ones developed in a broad understanding of their context, their interactions and 

dependencies and their natural paradigms. Conversely, any structure or development that is built without 

regard for these things will almost certainly result in negative interactions and ”unintended consequences” 

such as increased ground temperatures or wind, concentrations of unfriendly materials and diversion or 

pollution of the watershed -- much as the placement of an enormous payload in the center of a 

spacecraft’s main air supply would eventually cause strain on all of the vehicle’s systems as temperatures 

rise, fans overheat and gas exchange is constricted. 

In order for a near-term human expedition to Mars or a return to the Moon to be viable, the NASA 

roadmap has identified a number of systems or technologies that must be developed. Because these 

must meet stringent requirements for reliability, low total system mass and minimal maintenance within 

the closed-loop context of a zero-contamination planetary science scenario, the development of 

sustainable, simple systems that closely resemble Earths natural waste and water cycles is strongly 

indicated. Nonrecyclable consumables must be avoided as much as possible and power consumption 

kept to a minimum in a real planetary setting, two requirements that require a greater level of maturiiy 

than the Advanced Life Support [ALS] technologies already tested in conjunction with the Lunar-Mars Life 

Support Test Projects of the mid-1990s’; nevertheless, the success so far achieved in bioregenerative 

Water Reclamation Systems [WRS] both by NASA’ and by the European Space Agency (ESA)’s 

MELISSA loop tests suggest that the ecological, biomimetic model on which they are designed is a strong 

approach for supporting long-term human well-being on Mars”. 
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WHAT IS TO BE DONE? 

For at least half of the human households on Earth, a solution to these same problems has also remained 

elusive. Throughout the developing world, not only the poorest communities are hard-hit by the lack of 

clean water and safe sanitation. Middle-class and agricultural households located in exurban areas 

downstream of major cities often suffer from a particularly noxious water supply thanks to the massive 

Western-style "flush and forget" sewer systems that were built in many developing countries by well- 

meaning donor assistance programs in the mid to late twentieth century. This practice still continues at a 

larger and larger scale. These systems enable decent sanitation for some within the city, but do so simply 

by collecting wastes and contaminants and dumping these wastes into the nearby watershed. It is 

estimated that somewhere between six and eight thousand children die every day on our planet simply 

because their drinking water is not safe", while an additional twenty-five thousand perish daily thanks to 

hunger, violence and other preventable health issues. Clearly, the human interface with the water system 

is badly broken. 

Designs for systems to support long duration human spaceflight have a number of special requirements. 

Systems for water, sanitation and food production must sustain human life without depending on external 

powedwaterkewage grids, and at the same time offer ways of recycling waste products into useful 

resources. Each habitable environment must maintain certain standards to guarantee the safety of the 

crew from contaminants; this monitoring function must be very low-maintenance and require as few 

consumables or replacement parts as possible. Monitoring systems for a Mars expedition must be 

rugged, compact, and field-deployable, and must provide a simple user interface without complex 

procedures or specialized knowledge. 

In other words, all systems should be designed at a minimum cost to the mission, requiring little or no 

crew time to run and maintain in an environment where resupply flights are not an option should 

something wear out or break down. These criteria are also highly relevant to technologies supporting the 

Millennium Development Goals. Sustainable systems help promote ecological balance. Small, simple 

technologies can circumvent the machinery of bureaucracy and investment that all too often stands 

between foreign development cooperation programs and those they are trying to help, while low- 

maintenance systems that run without expensive, exotic parts will work equally well for unskilled 

operators as for more sophisticated users. 

I 

In response to the recognition of this synergy, a coalition of experts in space architecture and technology 

and waterkanitation experts for developing countries called a meeting of colleagues from both sides to 

put issues and solutions on the table and to investigate opportunities for collaboration. 
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THE COLLABORATION 

The first “Water for Two Worlds” symposium was convened in New York City on the first anniversary of 

the launch of STS-107, in January of 2004. Hosted by the UNDP’s Water Governance Programme and 

Columbia University’s Earth Institute, the summit profited from the enthusiastic attendance and 

participation of representatives of ESAs Life Sciences directorate, NASA-JSC’s Advanced Life Support 

group, the International Water Association (IWA) and some leading experts in innovation, patenting and 

the transfer or adaptation of technologies between North and South. All participants were requested to 

make a presentation on the first day of the summit; in the first period, the problem of water was presented 

in some detail, along with ongoing field efforts to address water supply and sanitation issues. Existing 

technologies and methods with the potential for addressing the problem were the topic of the second 

session. The third session of Day One was an effort by the group to summarize the lessons learned from 

the first two sessions, to establish achievable goals for the collaboration, and to identify specific areas of 

synergy that suggested a course of action. On Day Two the active participants for the second phase met 

s to further refine the plan for forward work. 

TRICKLE-DOW N ECONOMICS: INTELLECTUAL PROPERTY, TECHNOLOGY AND POLLUTION 

When he introduced the Millennium Development Goals for improving the basic conditions of life around 

the world UN Secretary General Kofi Annan said, “First is water and sanitation.” How can we maintain 

the quality and quantity of existing water resources for the purpose of poverty eradication and sustainable 

development? This is a staggering challenge and one that is fundamental to our collective well-being. 

Not only essential to health and life, the availability of clean water is critical for economic development, 

food security, energy production, productivity, environmental protection and economic injections from 

tourism and investment.’* 

The factors that drive the water problem are ones of governance, technology and finance. Governance- 

related factors, such as the challenge of articulating these issues across the institutions, policies and 

structures of authority, impose the need to find alternate channels of delivery for new and sustainable 

sanitation technologies. While private sector initiatives might be brought in to the game, their 

effectiveness will be limited unless there is either a clear financial incentive or other structures to 

encourage them. In either case, the traditional sewage systems that require the construction of massive 

infrastructure are costly, aggressive undertakings that are unlikely to attract investment today. 

Multidimensional innovation-technical, institutional and financial-is one approach that may be used to 

circumvent the usual constraints to action13. 
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Intellectual Propertv 

Whether by outright invention or by adaptation of existing technologies, technical innovation offers one 

avenue for subversion of the roadblocks to universal water access. Although a review of existing patents 

clearly indicates that new water related innovations have a strong bias towards the needs of the 

industrialized North - with fully 50% of all water patents involving methods for desalinization of ocean 

water - a number of previous innovations may apply to today’s specific needs in water and sanitation. 

Expiring patents for innovations in water purification, sewage treatment and other water / sanitation 

related issues may provide the needed solutions while minimizing the costs of research and 

de~elopment’~. 

Technoloqv and Pollution 

The technologies that we in the North have been accustomed to using for sanitation are now recognized 

to be highly destructive to the wider ecosystem. Water-borne sanitation systems are “abusive to human 

well-being, unaff ordable and environmentally unsustainable.” One of the least visible consequences of 

many of the traditional development assistance programs led by Northern nations (many of them former 

colonial powers) in the 1960s is the unfortunate proliferation of centralized urban sewage systems. This 

method, which uses massive civil engineering to collect excreta and channel it into large bodies of water, 

has earned the nickname “Flush and Forget” sanitation because all too often the waste water is not 
treated before it is dumped into water bodies, or “treated” just enough to dilute the city-dwellers’ toxins 

and pathogens and deliver them to the inhabitants of the coastal and rural areas downstream who have 

no other water source on which to rely for drinking and hygiene. 

Trickle-down pollution of this kind is one of the major areas of conflict between rural and urban areas. 

Many argue that it results from a failure to recognize certain fundamental principles, or at least an inability 

to see the connection between these ideas and the real problems that plague farmers and city-dwellers 

alike. According to the UNDP’s Water Governance Programme, the classic urban sanitation system is 

essentially a nineteenth-century technology that is fundamentally flawed in that it ignores the basic 

principles of water: 

1. Excreta are a valuable resource. In nature, there is no such thing as waste. 

2. Water is precious; it is an essential ingredient of life. It is neither a sink nor a medium for 

filth.’ 

SPACE, WATER AND ARCHITECTURE 

These principles have tremendous implications for urban design and architecture as well as civil 

engineering, in the so-called ‘developed’ countries as well as in the developing world. If human excreta 

are to be treated as a resource, then systems for separating urine from fecal matter must be developed 
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which are safe, clean and low impact in terms of user interface. Separating water from solid waste 

includes kitchen waste. In North America it is still common practice to inject a large percentage of plate 

waste and kitchen waste into the sewage cycle through use of sink-mounted grinders, even though this 

practice places so much strain on the water treatment system that it has been outlawed in Japan and 

much of Europe. Treatment of kitchen waste in a densely populated area implies organized composting 

systems, and suggests design strategies that include the integration of gardens with other structures such 

as roofs, parking lots and a variety of public spaces organized at a block or neighborhood level. Urban 

agriculture in turn bolsters nutritional status among the gardening population, and has the potential for 

invigorating the urban economy, if traditional marketplace areas can be recreated or revived to 

accommodate the sale of vegetables and other local foodstuffs'6. 

If water is to be treated with respect, then the delivery and recovery of potable water must be envisioned 

as an independent system based on principles of integrated water resources management. This idea 

also has design implications; for instance, a building conceived to collect and store rainwater, and to 

reuse greywater for hygiene and maintenance of the lobby's plantings while serving its program would 

have different structures and a different concept for systems integration than a traditional office building or 

apartment block. 

Equilibrium 

Separating the streams of the human ecological cycle begins to have another interesting effect on the 

urban environment: it re-forges the city's metabolic and economic connections to the surrounding 

countryside. Nightsoil, or the stored concentrations of human fecal matter that accumulate in a 

separation system, must be contained for several months before it can be safely handled and removed; 

but if it is composted under controlled forms during that time, the result is a very rich, inoffensive humus 

that could be put to use in farms at a savings to local farmers of tens of thousands of dollars per annum 

that are either spent on fertilizer or lost in reduced production due to the poverty of the soil17. Most of the 

nitrogen, phosphorus and potassium needed to replenish the soil is however in the urine which is safe to 

apply to fields without any storage period. Use of organic fertilizer also eventually lightens the chemical 

burden on the watershed; and little by little, the cycle regains equilibrium. 

Equilibrium is the ideal goal of any spacecraft system design: and in learning to integrate the tremendous 

technical challenges of designing what is essentially an unsupported, hermetic human ecosystem, space 

architects are developing many of the skills that will be necessary to tackle the integration of sustainable 

utilities and sanitation to Earths cities, communities and households. Some design principles suggest 

themselves for guidance when adapting a new technology to an existing system (or the other way 

around). 
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First, the simplest design is always the most efficient”, assuming that the architects have already taken 

into account all the issues placed on the system by its inputs, outputs, interfaces and context. 

Second is the principle of analogous or “synthetic” design: rather than setting out to reinvent the wheel, 

keep in mind that most functions that must be served by design have an analog in nature, as well as a 

solution. 

Svnthesis architecture 

Following the concepts of simplicity and synthesis, the approach that we selected for beginning our 

assault on the water problem was to focus on decentralized delivery of portable, sustainable 

technologies. Driven in part by the availability of Advanced Life Support systems designed to support a 

Mars DRM-sized crew, this “plug and play” approach is not so much aimed at subversion of dominance 

paradigms as it is geared to speed and ease of delivery. 

Small systems can be developed, tested, prototyped and delivered to an initial user group for field-testing 

at a minimum of cost and effort. Furthermore, if the systems hardware can be designed to reuse common 

items or to be readily manufactured locally, products can be delivered that are more likely to be both 

culturally acceptable and stimulating to the regional economy. These strategies increase the chance of 

success by making the user an active stakeholder in the process, and thereby raising the likelihood of 

adoption. The design strategy at which the Water for Two Worlds participants arrived for their first phase 

of action is to pursue development of small, simple, robust systems that aim at enabling the achievement 

(on a user-by-user basis) of household water autonomy. In preparing requirements for technologies to 

meet this goal, an immediate analogy is drawn to the Lunar-Mars Life Support Test Project (LMLSTP) 

Phase Ill test, and to the planned integration of multiple sustainable systems with human subjects in the 

Advanced Integration Matrix (AIM) facility at NASA’s Johnson Space Center. These projects are 

analogous to the requirements of worldwide household autonomy precisely because they are themselves 

autonomous habitats supporting a group of 4 to 6 people, equivalent to a small household. 

At the higher level of systems integration, the analogy may be drawn between the city-dweller‘s 

relationship to the urban water and sewage system and the relationship of the new system’s user 

population to the Earth. We raise the level of the loop closure to the planetary system, since we 

understand this to be the pattern of origin. Our household systems are plug-and-play peripherals that 

concentrate certain aspects of the water and nutrient loops already present around us. Our technologies 

are designed to tap in to the utilities that are already hard-mounted: potable water in, hygiene water out; 

greywater in, nutrient loop out; food in, solid waste out; nightsoil in, fertilizer out; and so on. Consider the 

cost savings of this approach. In viewing the environment as a mothership and designing our systems to 

interact to its specifications and requirements-just as we must do when designing hardware or software 
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for any spacecraft-we are able to skip huge, costly investments and avoid rigid structures. What makes 

this proposed design innovative rather than derivative is its adaptation of rigorous, closed-loop 

technologies in recognition of the Earths limitations, and the resulting need to take individual 

responsibility for environmental pollution and sustainability. 

DEVELOPING STRATEG I ES 

There are three principal issues that those designing any sanitation system will have to contend with. 

First among these is the problem of pathogens: how to detect their presence, how to isolate the user 

population from them, and how to remove them from the excreta rapidly and in a nonpolluting manner. 

Contamination detection kits can be extremely costly, difficult to obtain and challenging to use. Coming 

up with simple, inexpensive method for water monitoring will be critical to the effectiveness of 

autonomous water systems, and reducing the waiting period before fecal matter can be handled would 

contribute enormously to the proper and safe use of separation-and-containment sanitation. The water 

source is another issue, in that its quality, proximity and abundance can significantly alter the nature of 

the systems needed to ensure household water quality from location to location. 

Last but by no means least of these issues is that of cultural acceptance: water and sanitation are 

inherently bound up with bodily functions that lie at the heart of many cultural taboos since they involve 

ideas of purity, gender, sexuality, life and death. No system that fails to take these taboos into account 

will meet with success. Regardless of its efficiency or elegance, if a technology does not meet with user 

acceptance it is worthless. 

Eco-San 

Water and sanitation policy experts presented a number of “home grown” strategies for improved 

sanitation that have developed and been adopted in disparate, relatively limited user populations and 

have met with a comparatively good rate of success. These range from the relatively simple Arbor-Loo, 

which has had good results in Mozambique, to the fairly sophisticated systems developed for use in 

advanced housing developments in Germany and Sweden. Various NGOs including SlDA and Water- 

Aid are sponsoring pilot projects in ecological sanitation-r EcoSan - in rural, urban and peri-urban 

areas in South America, Africa, Mexico, China and India. All of these projects are structured to involve 

the community and their values in the adoption of technologies that are appropriate to their needs. 

The EcoSan movement has tied innovative sustainability to scientific research in order to find solutions to 

a series of interrelated global problems. Major problems identified are related to common methods of 

management or mismanagement of land, water and sanitation; to wit: 

- Pollution of aquifers, rivers, lakes and the seas, dying coral reefs 

- Inefficient water usage through flush-sanitation (requires massive flows to function) 
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- 
- 

Dramatic loss of soil fertility around the world, dramatically underestimated 

The human nutrients cycle is broken, mixing of faeces with the water cycle without treatment 

contributes largely to the 5 million people dying from waterborne diseases 

Arbor-Loo 

Among the examples of eco-san technologies that have successfully contributed to better sanitation in 

rural settings, first was the arbor-loo, a movable outhouse that is designed to permit the users to pick up 

and shift to the side when the original pit is full. Little more than a movable pit latrine, the arbor-loo can 

be set up more or less anywhere with a little extra space, to provide users with a private and sanitary 

outhouse. Once the pit is full, the Arbor-loo structure is lifted up and moved several meters away to sit 

over a new pit. A tree is then planted in the old pit, and grows rapidly to recycle the nutrients that have 

been left in the soil. 

Advantages of this system include its portability and the direct and immediate recycling of the excreta in 

the form of fertilizer for new banana trees. However, concerns about keeping untreated waste separate 

from the groundwater and from food-producing plants until it has been through at least one prior cycle of 

filtration make the Arbor-Loo a less than satisfactory solution for the long term. Also, its applications are 

limited to rural areas where land is available for planting; it is not likely that this system would work very 

well for long in more densely populated, space-restricted locales. 

The Sortina toilet 

It appears the most central common technology in an effective, sustainable system for human sanitation 

is the separation of liquid and solid wastes; or in other words, a toilet-type fixture that is designed to 

collect the urine separately and to siphon it away from the solid waste. As long as solid waste remains 

dry, the unpleasant odors associated with it rapidly dissipate and any pathogens that have been excreted 

have little opportunity to spread. This principle suggests the design of new hardware that can effect 

sanitation without sewers. Along the same line, autonomous, household-sized systems can be 

envisioned that collect and deliver water without pipes, and are able to manage local resources on a user- 

by-user basis. 

One hardware item that can be used for ecological sanitation systems is the Gustavsberg sorting-toilet 

that separates urine from fecal matter and runs the liquid waste into a garden; although the caveat must 

again be issued that it is best not to run urine directly into vegetable crops''. This technology has 

received a good deal of attention in Europe, although not exclusively. Major sanitation industry players 

are looking into the profitability of developing some eco-san-compatible units for private use, including 

Vivendi and Villeroy & Boch; but a small fiberglass shop in central Mexico has been enlisted to produce a 
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similar product that has been successfully field tested as well. In the Swedish new town of ???, a 

separation system for treatment of liquid and solid waste has been built, and these toilets put to use; 

likewise in the German town of Luebeck-Flintenbreite, where a vacuum system has been installed to draw 

the solid waste to a central location where it is ground into homogeneous material. 

Decentralized waste treatment 

The separation of waste streams requires that systems be in place for treatment of the urine and fecal 

matter, and for the runoff of hygiene processes, known as greywater, as well. While it is certainly 

possible to conceive of a central network for this type of treatment, this idea is not very practical due to 

the cost and complexity of moving all the separate waste streams to central locations. Once again, we 

are looking at a strategy that strongly implies the decentralization of waste treatment, either at the 

household level where density is low (like the Earthship, which we will discuss shortly), or at a 

neighborhood level where density is high. Various approaches can be taken to treating the different 

streams: two of the most common are the reuse of greywater for hygiene and gardening, and the use of 

special gardens for treatment of yellow water. 

Other strategies include the construction of wetlands for reprocessing greywater, as well as more 

intensive "digesters" for blackwater as in the Projekt Freiburg-Vauban, also in Germany. Another major 

problem is the new and increasingly significant presence of pharmaceutical residues in the water supply. 

Human waste, however carefully filtered, continuously adds organic, pharmaceutical compounds such as 

antibiotics and hormones (like estrogen) into watersheds the world over; and because of their structure, 

these compounds are all but impossible to extract. 

The Diet of Worms 

A pilot project for addressing this issue in solid waste is underway in Lambertsmuehle, where a two-year 

composting tank is being scoured through the intervention of large numbers of worms. Tirelessly aerating 

the soil, worm activity has long been valued by gardeners; but their constant feeding has the added value 

of consuming and processing organic compounds and pathogens. According to the International Water 

Authority (IWA), every lgram of fecal matter contains some 10 million viruses and 1 million bacteria, and 

can contain lo00 parasite cysts or 100 parasite eggs. For these same reasons, it is imperative that the 

products resident in pit latrines be kept separate from groundwater. 

However, the Lambertsmuehle worms have also demonstrated an ability to expedite the neutralization of 

solid waste. Since worms consume these microorganisms, their presence in systems for the safe, 

sustainable conversion of human waste is invaluable; current studies suggest that active worm action in 

fecal composting can reduce the quarantine period from six to only two months, and perhaps eventually 
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even less. Research into the application of this process to Exploration-class solid waste management 

might prove extremely valuable for long-duration space missions. 

One final characteristic of sustainable sanitation systems is their independence from central networks, 

which makes them remarkably cost-efficient for the end user. 

Notably absent from the Eco-San strategies to date is any kind of system for ensuring the potability or 

cleanliness of the household water supply; while most of the sanitation systems do separate urine from 

fecal matter at the point of collection, the urine is generally either dumped elsewhere or used to help 

fertilize crops. This “yellow water” is generally not reused or cleaned, and the reuse of household 

greywater for gardening is not uncommon; but whatever focus currently exists on water treatment is 

primarily at the removal point and not at the point of entry to the household. 

Earthships 

The Earthship movement, which has begun to take hold in the Western United States over the past 

decade and a half, is an interesting example of adaptation of architecture to invite and support simple, 

sustainable systems to run a fully modern American home. These homes are of a passive solar design, 

typically built of thick masonry walls made of used tires packed with dirt, or of used aluminum cans 

stacked and stuccoed over with concrete. The masonry walls provide considerable thermal mass on the 

north, east and west walls of the house and permit the construction of a glass south wall to light and 

warm the home and support an interior greenhouse garden. While the water-collecting shape of the roof 

might not be of much use on Mars -the roofs usually scoop rainwater into a sterile collection tank for 

storage - much of the systems-sensitive design of an Earthship offers an excellent paradigm for in-situ 

habitat construction in remote locations. Hygiene water is rerouted internally to the kitchen garden, and 

solid waste is composted on site; some advanced Earthships are even working toward water treatment 

through their garden loop. 

For all its virtues as a paradigm, the Earthship itself is nonetheless a structure whose current form still 

presupposes a context of wealth. The environment providing all the utility inputs is clean, dry, temperate, 

sunny and lightly populated; receiving acid rain at a latitude that is severely constrained for light, for 

instance, or the need to dispel heat and humidity in a tropical environment, will add requirements to future 

Earthships that have not yet been encountered. Most challenging to adapt to common use in Southern 

economies on Earth is the fact of inherent value: the Earthship requires tremendous investments of labor 

and know-how to build, and is not transportable. Thus, only the user who is also a landowner is likely to 

find such a significant investment worthwhile. It is not a useful archetype in places characterized by 

situational uncertainty like areas suffering from regular shortages of water or crops, from warfare or 

sporadic conflict, or in urban areas, where homeownership is restricted to a very small sector of the 
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population. The Earthship may prove to be a more valuable technology in the parts of the world that are 

wealthier in resources and typically more abusive to the environment. 

Ethnocentricitv of value 

Technologies are generally considered appropriate or inappropriate to an application when their capacity 

fits the functional requirements. This is true of value as well; and value, it is well established, is culturally 

relative in almost every way. Innovations have also been found to have radically different value in 

different cultural and economic contexts; in this way, they can be considered ethnocentric. One 

example is given of value-ethnocentricity with regard to an invention that uses air bladders in the soles of 

the wearer‘s shoes to generate pressure sufficient to release water (stored in a tank worn like a 

backpack) at considerable force from a hand-held nozzle. In India, where this ingenious device was 

cobbled together by a subsistence farmer in need of a better way to irrigate and fertilize his crops, it 

cannot be produced or sold at very high cost and has value as a tool for enhancing the user‘s 

fundamental subsistence. Once patented in the USA, however, this technology was sold for a great deal 

of money to a toy manufacturer and is expected to reap colossal profits from its application in a 

newfangled water gun-cum-exercise shoe, in which manifestation its value is purely one of entertainment 

and probably short-lived.*’ 

It is especially important for those undertaking the adaptation of high-performance technologies to 

subsistence uses to keep this lesson in mind. What is value? In the equation above, cost-value and 

intrinsic value of the bladder-pump add up to roughly equivalent total value in both applications, but while 

the cost-value is higher in the Northern economy, in the Southern economy it is of far greater intrinsic 

value. A simple, hand-made kitchen tool produced for home use by an African woman may be treasured 

as an example of primitivism and artisanal skill in Paris. And costly “space age” technologies for the first 

human mission to Mars, that have little more than cachet for those of us with instant access to ubiquitous 

sources of clean water, may find their highest intrinsic worth as the source of life and health to two billion 

people on Earth. 

WATER FOR MARS 

Long-duration sustainable sanitation systems can go one of two ways: either recycle organic waste for its 

valuable nutrients or collect, stabilize and store the waste for future use of an undefined nature. The 

former solution requires that multiple cycles and systems be nested, which has short-term drawbacks in 

terms of cost and complexity but long-term value as a more stable system. One alternative to growing 

traditional food crops is algae farming. Algae are an excellent if unconventional food source, and offer 

greater stability in the 02/C02 cycle. . 
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MELISSA, Concordia and the ESA offerinqs 

ESA has several facilities dedicated to ongoing research on life support systems that can sustain an 

extended human presence in space or on other planets. These include the ARES Air Revitalization 

System as well as various technologies for treatment of greywater, yellow water [urine only without 

exposure to fecal matter] and blackwater. 

In the area of bioregenerative water revitalization, the MELISSA project encompasses several research 

efforts into different if complimentary approaches. Compartment I of the MELISSA loop uses thermophilic 

anaerobic bacteria to break down contaminants in the wastewater; Compartment I I uses specialized 

photoheterotropic bacteria, and Compartment IV uses photoautotropic bacteria. 

These loops represent the bioregenerative component of a hybrid physicochemicabioregenerative 

sanitation system that has been installed at the European Concordia station in Antarctica. ESAs charter 

compels the Agency to identify synergies between space research goals, findings and technologies that 

have resulted from space research, and the needs of the citizenry of Europe and the Earth. As a result, 

ESA already has experience in the transfer or adaptation of their technologies. The Concordia system 

will be fully operational in July 2005, using anaerobic degradation for treatment of blackwater; hybrid 

systems to treat greywater for summer teams of up to seventy people will be operational by July 2004. 

NASA and the problem of water monitorinq 

The International Space Station uses both ground-supplied stored water and processed condensate 

recovered from air conditioning systems to meet the drinking and hygiene water needs of the current crew 

of 2 or 3 persons. With very limited opportunity for sample returns (twice per year) and no on-orbit 

laboratory for water quality analysis, ensuring that the crew has a dependable and safe water supply that 

meets US and Russian requirements for potability is a significant challenge. The current approach is to 

monitor the water using lightweight, disposable test kits that are specially designed to work in zero 

gravity. As such, NASA has and will continue to invest in research leading to simple, quick, and reliable 

methods to measure various aspects of water quality including pathogen load, organic and inorganic 

contaminants, and general indicators such as pH and conductivity. 

Many of the goals of water monitoring in spacecraft coincide with desirable attributes for monitoring of 

sustainable water and sanitation systems. These include: 

1. Rugged. No refrigeration capability is available on the International Space Station; therefore, 

media used for culturing bacteria or chemical indicators must often be stored at temperatures and 

conditions outside of those recommended by manufacturers and NASA has built up data over the 

years to validate the analytical performance of systems exposed to harsh environments. A similar 
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problem is encountered in deploying water monitoring technology in remote areas or urban 

regions without access to electricity. 

2. Compact. Space systems are subject to extreme limitations on volume and mass. All the 

components used in an analysis must be provided in one package that is easy to transport. 

3. Field Deployable. Once a monitoring device is on the Space Station, it must be easy to set up 

and tear down to make room for other experiments and routine operations. Similarly, the most 

suitable operations concept for monitoring many independent rainwater collection and storage 

systems is a system that is not tied to a particular location, but can be transported to each 

location as necessary. 

4. Simple. Since Space Station crewmembers must receive training in the operation and 

maintenance of hundreds of spacecraft systems, only a few hours can be allotted to water 

monitoring. On earth, very few individuals have the education and training to conduct laboratory- 

level water analysis. To move away from traditional central water supply and sewage treatment 

systems, monitoring must also move out of the central laboratory and into the hands of less 

experienced operators in the field. 

Since water monitoring for spacecraft and ecological sanitation systems share many of the same goals, 

opportunities exist for collaborating through knowledge sharing and technology development. The first 

step would be to integrate NASA water monitoring technology and expertise into the Household Water 

Autonomy Concept presented in this paper. 

WATER FOR EARTH 

The third period of the symposium’s Day One involved the review of our common findings and 

establishment of common conclusions. 

MAIN CONCLUSIONS 

1. We need to preserve and protect Earth’s resources, fresh water and soil fertility for future generations. 

Today we have more than 6 billion people living on the planet. Soon 50% of the population will be 

urbanized, living within 50km of a coastal system. We are pushing natural resource limits, and worrying 

about pollution limiting our use of other resources. The problems we have today cannot be solved with 

the same kind of thinking that created them. Business as usual approaches to water and sanitation / 

waste management will fail to provide the poor with the services promised in the MDGs. A new approach 

is needed. 
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2. The analogy between spaceflight technologies and sustainable Earth systems is relevant. Sustaining 

life in both space systems and earth ecosystems have the common goal of operating in a closed loop 

system with minimal external input. 

3. Research and development on space technology have high relevance for terrestrial water and 

sanitation applications. A number of success stories on technology transfer from space to terrestrial use 

can be reported such as i) Biostyr - nitrification and de-nitrification process (ESA); ii) Concordia station -- 
water recycling systems (ESA); iii) Biomass sensor - biological activity determination (ESA); iv) BIOMET 

- heavy metal management (ESA). 

Furthermore, most experts working on space research are de facto terrestrial experts and have 

knowledge and skills to address very practical problems. Space architects have extensive knowledge of 

terrestrial models combined with a rare and emerging mindset of integrative, sustainable systems design 

as a fundamental aspect of the built environment. 

4. The “ideal” technology on water and sanitation services for the poor to meet the MDGs should include 

the following characteristics: 

- low on energy demand 
- 
- 
- 
- affordable to the consumers 
- 
- 

reliable and easy to maintain 

easy to operate, user friendly 

cutturally acceptable and address men’s and women’s specific needs 

maximize health benefits, high safety and quality control 

minimize pollution, highest possible recycling level 

5. Constraints in space application lead to highest requirements in terms of: 

- low mass, low volume 

- lowenergy 

- highest efficiency 

- higher control 

- flexibility 

6. Research on space technologies is highly relevant to address terrestrial needs such as: 
- 
- 
- 

- sanitation (one household) 

individual, portable and manual recycling systems (one household) 

village or neighborhood water recycling systems (grey, yellow and black water) 

heavy metals detection and removal 
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- high protein complements production 
- maximized reuse of organic waste 

7. The space agencies have competencies highly relevant to support terrestrial sustainable development 

approaches including “high closure of the loop” and “from water to food processes” 

8. Development of new technologies should be balanced against the identification, adaptation and 

promotion of existing innovations to meet today’s specific needs in water and sanitation for the poor. 

9. Financial constraints are an important consideration when transferring technologies to developing 

countries. There are specific needs to consider the financial sustainability of implementing and 

maintaining the technology. In addition to a financial feasibility assessment, an overall assessment of 

stakeholder identity and community needs must be undertaken, keeping in mind issues of gender roles, 

local economy and political dynamics. 

PHASE ONE: ESTABLISHING “HOUSEHOLD WATER AUTONOMY 

On the second day of the summit, a plan of action was roughed out for near and long-term phasing of 

efforts to adapt Exploration-class technologies for the use of Earth’s population. 

The first phase of this collaboration will focus on a low-end application of ALS water systems in largely 

rural and then urban slum settings; one of the principal challenges in the initial phase is responding to the 

need for these systems to be easy to lay out and build in a small home at little or no cost to the user. In 

the former, the project’s goal is to develop a sustainable, low-tech system that improves general 

sanitation and reduces child mortality; this low-cost design will offer knowledge back to the space 

program in the form of simplified, robust versions of the ALS waste treatment suite. 

The wav forward 

Participants agreed to establish an informal network (the Water For Two Worlds Alliance, W42WA) to 

bring the Earth and space research communities together. The UNDP will initially be the focal point of 

this Alliance. 

UNDP offered to identify 2-3 communities appropriate for testing the relevance of the space agencies’ 

research abilities. The sites selected cover rural, peri-urban and urban settings as well as different 

physical, socio-economic and cultural environments. UNDP is now in the process of providing the 

researchers with information about these test cases so that system requirements can be established. 

Using its network of country offices and local NGO partners, UNDP will obtain the best possible 
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information and lead the field testing of new technologies as they develop. The space agencies will 

contribute with feasibility studies and "in-situ" demonstrations. 

In response to the recognized need to develop different technologies for different "grades" of pollution, a 

tentative "division of labor" emerged: 

IWA - black and yellow water 

ESA - grey and yellow 

NASA -test of potable wate?' 

Synthesis architects - design studies on appropriate urbanistic and design strategies for the 

target sites (rural and urban) 

- 
- 
- 
- 

Relevant ESA technologies to be investigated or adapted include filtration technologies and biological 

processes. Preliminary conceptual studies commenced immediately, with initial results to be reported at 

the next Alliance meeting in August of 2004. The proposed collaboration with UNDP will include two 

types of activities carried out in parallel: 

0 

0 Study of specific cases 

Continuous exchange of information: "brainstorming" 

Action Dlan 

Requirements definition (UNDP): 

Concept studies (ESA) 

Identification of areas where space technologies could be used (UNDP) 

Feasibility studies (ESA): phase A 

o Prototype development 

o Laboratory tests 

o 

o 

o Improvements 

Validation (according to UNDP requirements) 

In-situ evaluation (field prototypes): advantages and weaknesses 

0 Implementation of the concept (UNDP): with ESA support 

Water Architecture 

While there are many technical questions to address in streamlining bioregenerative systems for 

application in places where exotic technologies like disposable filters cannot be found, the architectural 

aspects of this program also offer many opportunities for innovation that may prove valuable to the design 

of sustainable homes the world over. There are a few precedents upon which we are building our formal 

approach, such as the Mexican and Swedish waste-separation structures and certain of the green 

techniques that have been applied to date in the Earthship movement. However, none of these is 
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comprehensive in terms of suggesting either construction methods or design strategies for field 

implementation of bioregenerative systems for applications at any level of investment. New design 

strategies for common building types will begin to emerge as the application spreads, leading space 

architecture to adapt some new principles of water design. 

Once plug-and-play system units for household water autonomy have been developed, the adaptation of 

simplified Exploration-class water technologies to their terrestrial field context will become the subject for 

design studies. Simplicity, adaptation and cultural acceptance clearly are preferable to high-tech, object- 

oriented solutions when the goal is rapid deployment, broad acceptance and long-term success; 

furthermore, the relationship of household potable technologies to village or neighborhood composting 

and treatment paradigms will require iteration. A series of patterns will need to be established for rural, 

exurban and urban settings based on population density, local custom and the availability of public space. 

SUMMARY 

In recent years, much of the technological capacity of the wealthiest Northern economies has been 

focused on the development of systems and technologies to support human exploration of the solar 

system. Some of the earliest successes in this area have been in sustainable systems for water recovery 

and sanitation that are especially well suited to the requirements of a household-sized crew on a mission 

to Mars. Meanwhile, one-third of the inhabitants of our water-rich Earth are living without clean water or 

access to sanitation, problems that threaten the health and economic well being of the poor and cause 

the death of thousands of children every day. 

Previous attempts to balance the problem by providing massive sanitation infrastructure to selected urban 

centers around the world have compounded the total pollution issue by blocking normal watersheds and 

delivering concentrated urban pollutants to those who live downstream. Meanwhile, issues of 

governance, finance and institutional rivalry have prevented the delivery of many goods and services to 

those most in need all over the developing world. The best solution to the most immediate problem- 

child mortality-would have to be effectively independent of existing structures, simple, portable, effective 

and based on organic principles that do not generate problematic waste products and are low in the 

consumption of power and consumables. 

These qualities are also required characteristics of the most advanced water recovery systems in the 

world: the Exploration-class technologies on which NASA and ESA researchers have been focusing over 

the past decade and a half. An ad-hoc group, the Water For Two Worlds Alliance has organized to 

exchange their expertise in needs and capabilities, and is now in the process of developing requirements 

for the adaptation of existing space WRS technologies to two or three test cases. Once prototyped, these 
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technologies will be delivered and field-tested by various NGO organizations under the auspices of the 

UNDP, with an initial focus on the goals of household water autonomy and neighborhood (village) scale 

sanitation and treatment. It is hoped that these two fundamental design principles will prove valid and will 

pave the way to ever broader practice of synthesis architecture in the planning and design of structures, 

neighborhoods and cities. 
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